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Simultaneous Reflections and the Mosaic Spread in a Crystal Plate 

BY S. CATICHA-ELLIS* 

Physics Department, Polytechnic Institute of Brooklyn, Brooklyn, N.Y. 11201, U.S.A. and School of Physics, 
Georgia hTstitute of Technology, Atlanta, Georgia 30332, U.S.A. 

(Received 9 September 1968 and in revised form 5 February 1969) 

The intensity of an X-ray (Bragg) reflection from a mosaic crystal plate under the conditions of multiple 
diffractions is discussed theoretically. The set of simultaneous differential equations is solved exactly 
for the two-beam and the three-beam cases. A second order approximation is given for the multiple 
beam case, and a third order approximation for the triple beam case. The fact that the ratio R of the 
peak intensity of a single diffracted beam to the intensity of the same beam under conditions of multiple 
diffraction depends on the mosaic spread ~t of the crystal provides a method to obtain this magnitude from 
the experiment. Preliminary measurements were performed on Si and Ge single-crystal plates under 
conditions of multiple diffraction. From them experimental values of R were obtained for different 
planes, which then were used to calculate the mosaic spread of the crystals. In this method only relative 
intensity measurements have to be used and most of the corrections found to be necessary in other 
procedures used to determine mosaic spread are not needed. The polarization factor for the case of a 
double reflection preceded by a monochromator is analyzed and the results are given in an Appendix. 

Introduction 

The experiments with whicb the present paper is con- 
cerned are similar to those performed by Renninger  
(1937) to show the effects of multiple diffraction in the 
' forbidden'  reflection 222 from diamond.  The crystal 
is oriented so that a given reciprocal lattice point 
(RELP in what follows) is under reflecting conditions 
and in such a way that the crystal can be rotated 
around the diffraction vector H (Fig. l). During the 
rotation the RELP H remains on the Ewald sphere, 
thus continuously diffracting in the direction CH. The 
detector D is positioned so as to measure the intensity 
of this diffracted beam which is then recorded as a 
function of the angle of rotation co around the vector 
H. The intensity remains constant until one or more 
other RELP's  contact the Ewald sphere, and then, 
depending on the particular pair or set of reflections 
involved, an increase or a decrease in intensity is ob- 
served. 

We shall assume in what follows that:  
1. The crystal is of  mosaic type with an angular  

distribution of crystallites W(A) which is approximately 
Gaussian and isotropic: 

1 
W(A) - r/,r~---g zzc exp ( -  AZ/2rlz). 

2. The incident beam is nearly monochromat ic  and 
well collimated so that its angular width is much 
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smaller than that associated to the mosaic distribution 
(~). 

3. r/ is much bigger than the half-width of the dif- 
fraction pattern due to a (perfect) single block. 

Assumption 1 is n?rmal ly  used in connection with 
mosaic crystals in the absence of a more realistic 
model appropriate to the sample tested. Eventually, 
however, one obtains information showing that W(A) 
varies with direction or with some other parameter.  
Assumption 2 is fulfilled through careful experimental 
technique and it implies that even that the beams are 
slightly divergent we shall make use of the approxim- 
ation that plane waves are travelling in the crystal, 
their intensities being functions of position. Fulfi lment 
of assumption 3 depends entirely on the sample under 
study; it does not apply to a nearly perfect or perfect 
crystal, i.e. it amounts  to assuming that in the crystal 
used primary extinction is negligible. 

Fig. 1. The crystal is oriented so that tile RELP H is under 
reflecting conditions. It is turned around the diffraction 
vector H and the intensity measured by the detector D is 
recorded as a function of the angle of rotation co. 



S. C A T I C H A - E L L I S  667 

Intensity solutions for multiple reflections 
in a crystal plate 

Let us designate with subscripts i,j, k, . . . ,  the different 
beams as well as the RELP's that originate them. The 
subscript o is reserved for the incident beam. 

The total change in power of beam i owing to ab- 
sorption and to the simultaneous reflections by n other 
RELP's as it traverses a layer of thickness dx at depth 
x below the surface is given by (Zachariasen, 1965) 

d----~-- Yf /.t + - , (1) j=o }'1 Y~ 

where yi and yj are the direction cosines of beams i 
a n d j  relative to the normal to the plate surface. 0~I is 
the effective reflectivity of plane (i- . /)  and P~ the power 
of beam i. 

In equations (2), (3) and (4), which apply respectively 
to the incident beam, to the primary diffracted beam 
(subscript 1), i.e. that corresponding to the RELP 
which is maintained on the Ewald sphere during the 
rotation, and to an arbitrary reflection i, the contribu- 
tions of the incident and primary diffracted beams have 
been explicitly introduced. 

dPo Po P1 
d ~  - y~ (lZ + 0oi + X. 0__.ol) + -Yi- 0_.1o 

J 

+ Z _p1_ 0io , (2) 
/ Y1 

dP l  _ Po 0ol  - P l  (~/+01o_~. ~ 023") 
+ dx Yo )'~- j 

+ X  P 1  011 , (3) 
j D 

dPt _ Po Ooi + P1 Q l i -  P~ 
dx yo ~---~- y~. (It + Q~o + 0__,il 

+ Z0~l) Jr- X P J  0it .  (4) 
j=2 j=2 ~)1 
.i¢i j¢i 

Equations (2), (3) and (4) were first given by Moon & 
Shull (1964). The plus sign on the left side applies to 
the transmitted beams and the minus sign to reflected 
beams. The interaction coefficients Qil, which will be 
discussed later, are related to the reflectivity per unit 
volume of a small crystallite QiJ and to the mosaic 
distribution function W(A): 

O~j=Qij. W(A).  (5) 

We are interested in the intensity changes in beam 1 
when other RELP's are brought into contact with the 
Ewald sphere. Moon & Shull (1964) have given approx- 
imate intensity solutions for the case where all the 
beams are transmitted through the crystal. They used 
a Taylor's series expansion of P~(x) about the point 
x = 0 .  

The simultaneous differential equations will next be 
solved for the double-beam and the triple beam cases. 

Double-beam case 

Po = - A oPo + BP1 , 
- P1 = CPo-AIP1 , 

where the dots indicate derivation with respect to x. 
When the beam 1 is reflected: 

A o = - I  (/~+Qol), B=Qlo/yl ,  
Yo 

A1 = .... 1 (lZ+OoO, C=Q~o/yo. 
yl 

If the beam 1 is transmitted one has to change the 
signs of A1 and C. 

By differentiating the differential equations we ob- 
tain after a few manipulations: 

"P + ( A o -  A1)/6+ ( B C -  AoA OP=O , 

where P stands for either Po or P1. Then 

P1 = F1 exp klX-}- F2 exp k2x, 
Po= F3 exp klx  + F4 exp kzx , 

where kl and k2 are  the roots of the characteristic 
equation. 

For a reflected beam the boundary conditions are: 

Polo=Po(O) 
A 1/~o(0) -- BPI (0 )  = ( B C -  A oA l)Po(O) 
P~(T) =0 

CPo(T) -AoPI (T)=O , 

where T stands for the thickness of the crystal plate. 
Accordingly, the constants of integration are 

FI = - b / a .  F2 

Fz= Po(O) aC(D-Alk l ) (bk2-akO+azk lCAl (kz -k l )  
BC(bk l -ak2) (bkz -ak  0 + abAoA, (kz -k  O 2 

& = po(O)- F. 

- aka C P o ( O )  + b A  o ( k 2  - kl)Fz 
F4= 

C(bk2 -- akl) 

with a=exp  ( k i T ) ,  b = e x p  (k2T) and D = B C - A o A ~ .  
The intensity value we are interested in is p l =  
&(0)/po(0): 
pl = 
( a - b )  C ( D - A l k l )  ( b k z - a k l ) + a k l C A l ( k z - k  0 

B-C(b-kl ak2)(bk2"akOq-abAoAl(kz-kO 2" (6) 

For a symmetric reflection equation (6) reduces to: 
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a + b 
- a - b  

(7) 

If  absorpt ion is negligible, setting lo = T/yo, we obtain 

O_.lo 
lim Pl - , (8) 
u=o 1 + Q_.lo 

a well known result. 

Triple beam case  

The differential equations are 

Po = aoPo + boP1 + coP2 , 

P1 = alPo + blPx + ClP2 , 

P2 = a2Po + b2P1 + c2P2 • 

If  beam 1 is reflected and beam 2 is t ransmit ted the 
coefficients are 

,,+0o1+0o2 0ol 
a o = -  , b o = - -  , Co- 

7o Yx 7z 

a l  = 0ol , bl / z +  01o-{- 012  , Cl 021 

70 ~1 72 

I 

, (9) 

002 021 a+02o+021 
a2 - -  , b 2 -  , c2 = 

70 71 72 

If  both  beams are reflected one has to change the signs 
of a2, b2 and c2, while if both  beams are t ransmit ted 
one has to change the signs of ab bx and cx. 

By differentiating twice the differential equations we 
arrive after some manipulat ions at: 

"]:;+Efi'+ F P + G P = O ,  (10) 

where P stands for either Po, Pa o r  P2 ,  and 

E =  - (ao + bl + c2), 
F =  aob l -  albo + b lc2-  b2cl + aoc2- a2co , 
G = ao(b2Cl - blc2) + al(boc2- b2co) + a2 

x (b lco-bocl ) .  

(11) 

Then 

Po= F1 exp k l X  + F2 exp k2x  + F3 exp k3 x I 

P I = F 4  exp k l x + F s  exp k2x+F6 exp k3x J (12) 

P2 = F7 exp k lx  + F8 exp k2x + F9 exp k3x . 

The 9 constants of integration can be found by using 
the appropriate  boundary  conditions. In the case when 
beam 1 is reflected and beam 2 is transmitted,  the 
following set applies: 

Polo=Po(O) 

P21o=0 

b2/61 (0) - bl/62(0) = (b2a, - bla2)Po(O) 

bE16O(0) -- b o_P2(0) = (bEao - b oaE)Po(O) 

PI(T)=0 

c l P o ( r ) - c o P l ( r )  c2Pl (T) -c lP2(T)  
. . . . . . . . . . . . . .  

aoCl - a~co axcz -- a2cl 

fro(O) =aoPo(O) + boPx(O) + coP2(0) 

Jr;x(0) = a lPo(0)+ blPl(0) + c~P2(0) 

Jr;2(0) =a2Po(O) + b2P~(0) + c2P2(0), 

and one arrives at the following set of 9 simultaneous 
equations (13): 

F1 F2 
1 1 1 
2 - 
3 -- 
4 b2kl b2k2 
5 - -  

6 akl bk2 
7 kl(ao - kl) k2(ao - k2) 
8 alkl alk2 
9 a2kl a2k2 

F6 F7 

2 - 1 
3 b2k3 - blkl 
4 - - bokx 
5 c - 
6 ck3M a k i n  
7 bok3 cokl 
8 k3(bl - k3) clkl 
9 bEk3 kl(C2 - k l )  

F3 F4 Fs 

- b2kl b2k2 
b2k3 - - 

- a b 

ck3 a k t M  bk2M 
ka(ao-k3) bokl bok2 
alk3 k l (b l  - k l )  k2(bl - k 2 )  
a2k3 b2kl bEk2 

F8 F9 2nd  m e m b e r  
- - P o ( O )  

1 1 0 

- blk2 - blk3 (b2al - bxa2). Po(O) 
- bok2 - bok3 (b2ao - boa2) • Po(0) 

-- -- 0 
bk2N ck3N 0 
cok2 cok3 0 
Clk2 clk3 0 
k2(c2 - k2) k3(c2 - k3) 0 

(13) 
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where 

a =exp kiT, b = e x p  k2Z, c=exp  k3T, 

M=c2/cl . N -co /c1 ,  (14) 

N = alco--aoCl 
alc2 --  a2cl 

The computations involved can be easily pro- 
grammed and the exact solution for the three-beam 
case obtained to any approximation. In the general 
case of n beams the treatment would be similar and 
one would end up with a set of n 2 linear simultaneous 
equations in the n 2 constants of integration. 

We have sought approximate solutions for the 
multiple beam case. 

Multiple  beam case, second order approximation 

When P~ is a reflected beam, the boundary conditions 
are" 

At x=O:  
Po = Po(0), 
Px = PI(0) # 0 

Pi =P,(0)  { = 0  for transmitted beams 
¢-0 for reflected beams 

At x = T: 
PI(T) =0,  
Pi(T) = 0  for all reflected beams. 

From the Taylor's series expansion of Px(x) about 
x - -0  taken up to the second order and using the condi- 
tion Pa(T) =0,  one obtains: 

Pl(0)  = -  PI (0) .  T - ½ P ] ( 0 ) .  T 2. 

PI(0) and J61(0) are calculated from (2), (3) and (4). In 
the following, reflected beams are identified by a sub- 
script r and transmitted beams by a subscript t. 

Defining, 

Ao=~+Oo~+Z 0o~, } 
A1 =/.t+ Q l o + S  Oil (15) 

and Ar = ll + Oro + Orl + Z Or: ,  
j # r  

the following result is obtained: 

1 2 2 px[1 + A,la +~(A,  I, - Q~olol,) +½ Z Q2rl, lr 
r 

- -  ½ z~, O2t l l l l t ]=Ool lo[1  + ½ ( M l Z l - A o l o ) ] +  Z p r O r l l r  
t r 

+½ ~ pd~(OroOodo + A~Q#I) 
r 

--½ Z Qr,lr(Oorlo-prArlr + Z p:Qgrl:) 
j~r 

+½ ,r, O,d,(Oodo+ z PrOrdr) , (16) 
t r 

P:(0) 
where p : -  Po(O) ' and the l's are the path lengths 

for the different beams. 

Equation (16) will now be applied to two particular 
cases: 

Case I" Two diffracted beams 
Beam 1, reflected; beam 2, transmitted. 

P2(0) =0, 
Qa = 0  for all i ¢ 0 ,  2. 
Ao =p+Qo1+Qo2 , 

A 1  = / t +  Qlo+ Q12 • 

The following result obtains: 

00110 + 1Qollo(A~l~ - Aolo) + ½0_o2lo. Q2d2 p~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1 +Al l1  1 2 2 - - ~ ( -  Altx + Q~o/ot~ + QUd2) 

(17) 

Case II: Two diffracted beams 
Both beams reflected: pl ~ O, Pz ~ O. 

One obtains the result: 

where: 
pl = (alp2 + bO/cx , (18) 

al = Q,212 -k-½(0olQo2lol2 q- A x02,1112 + A202~l~), 

bx = Oollo[1 -F ½ ( A l l l  - Aolo)] - ½ 0 2 o 0 2 , l o l 2 ,  

ci l+Allx x 22 -2 1-2 = + 2(Alla - Q lololl) + ~Q a2ll l2 

An equation similar to 08)  holds for p2: 

p2=(a2px + bz)/e2 , 

(19) 

(18') 

where a2, b2 and C 2 can be obtained from equations (19), 
interchanging subscripts 1 and 2. Finally 

alb2 + blc2 
Pl = - - ,  

Cl C2 ~ al  a2 

azbl + b2Cl (20) 
P2 = 

cle2-  ala2 

Since the preceding intensity solutions include only 
up to the second order terms in the series development, 
they are applicable only when conditions for the rapid 
convergence of the series are met, i . e .O.~jh~l  and 
/zh,~ 1. In the examples studied here the first of them 
was generally quite well satisfied, the values of Q,jh 
being of the order of 0.01 to 0.10 (with a maximum of 
0.13). However, in most cases, the values of the h's 
are determined entirely by the absorption of the crystal 
and then ph is close to 0.5 as shown below (Appendix 
2). Higher order terms need then to be considered. 

We give next the third order approximation only for 
the case where the second diffracted beam is trans- 
mitted through the crystal. 

Third order approximation 
Two diffracted beams" beam 1, reflected; beam 2, 

transmitted. 

P l -  ~ ,  
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with 

= Oollo -Jr- 110 ollo(A 1 l l  - Ao/o) + Qo2Q2,lolz] 
+~ [  2 -  s - 2 2 - AoQoll o -  Ao.41Qolloll-.,4oQo2Ql:,lo12 

+ AiO_.OlZOZi- O_?oYoh + O.o,Q o 4Z  - O_.  QoIZotIZ  
+ A 1Q21 Qo21ol112 - A 2 Q z l  Qo21ol~], (21) 

and 

~ = 1 +  Al11 1 2 2  - 2  _ + (AA-Qo loh O_U@ 
+ -~[(Aolo- 2A~l~)QZllol~- 2QoxQozQlzlolzl2 

--2 2 + A~l 3 -  2A~QZzl~12 + AzQ~2lll2]. (21') 

Refleetivities 

It has been shown by Moon & Shull (1964), that the 
expectation value of the reflectivity is given by: 

Qi°s e x p [  (K~ " A'~)2 ] (22) 
O J- 2;?- ' 

when the crystal is rotated about an arbitrary axis. 
Qfj is the integrated reflectivity for a rotation around 
an axis normal to the plane of incidence, K~ a geo- 
metric factor which relates the rotation (zl013") around 
this normal to that around the arbitrary axis (Ae) 
(Zachariasen, 1945): 

zlOij = K~j . Ae . 

Equation (22) holds when the mosaic distribution 
function has a breadth which is large by comparison 

with that of the diffraction pattern due to a (perfect) 
single block (assumption 3). 

For the peak intensity, Ae=0, and 

0 ~ .  eak - -  Q} (23) 
, 7 1 / ~  " 

Determination of mosaic breadth 

The graph recorded in the experiment described at the 
beginning shows a more or less uniform trace with 
either negative or positive peaks superimposed (Fig. 2). 
The magnitudes 

single double 
PI(0) PI(0)  

P ~ -  Po(O) and p ~ -  Po(O)' 

t__ 

Fig. 2. Scheme of a multiple reflection pattern. The intensities, 
pl ' due to a single reflection, and pl  a due to a double re- 
flection, are recorded at the same scale. 

U N P O L A R I Z E D  
Y 

. B E A M  

y 

Fig.3. Illustrating the nomenclature used in the calculation of polarization factors. E~ indicates the electric field component  in 
the plane of incidence and E~ the component normal to it. Planes i and j in the scheme are respectively the primary and the 
secondary diffracting planes. The Z axis is in the plane of incidence and normal to the incident beam, n'i  is the projection of 
the normal m to the plane i onto the x ' z '  plane. The angle ~0 depends on the experimental set up, while ~, can be expressed as a 
function of 20i, 20j and 20k. 
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marked in Fig. 2, represent to a certain scale the values 
of p~ and pf. The former is given by equation (7) and 
the latter by equation (17) or (19) and (20) according 
to whether the second diffracted beam is transmitted 
or reflected, or by the exact solution, equations (9), 
(11), (12) and (13) after substituting for the peak 
values of Q~, equation (23). The fact that both magni- 
tudes are recorded at the same scale shows that there 
is no need to measure absolute intensities. If we write 

pf= R. Pl, 

where the value of R is determined from the experi- 
ment for a given double reflection, we can substitute 
for Pl and pf the expressions given by equations (7) and 
(17) or (21), or(7) and (20), thus obtaining an equation 
in the mosaic breadth r/. 

The method just described cannot be used in the 
case where 1 is a 'forbidden' reflection, since Pl is nil. 
However, the intensity of doubly diffracted beams can 
be quite considerable. Equation (17) assumes then the 
simpler form: 

10_o2/o0_21/2 
Pl = - -  . (24) 

1 +All1 1 2 2 --2 + ~(AI/1 -- Q121112) 
The numerator of equation (24) is of the type ky  2 
where y is a magnitude inversely proportional to the 
mosaic breadth (we have used in most computations 
y =  10-3/r]¢~). The ratio between the peak intensities 
for two double-reflected beams can then be used; 
equation (24) leads then to a second order equation in 
y. Equations (21) and (21') give a better approximation 
leading to a third degree equation in y. 

/ / 

REGION 
~l t [ I 

(DEGREES) 

0.04 

0.03 

0.02 
_] 

0.01 BRAGG 
REGION 

I I ! 

-0.581 -0.408 -0.255 -0.051 0.051 0.255 COS/3 

Fig. 4. Ge rman ium plate. Some results f rom preliminary meas- 
urements made with Mo K~. © Primary reflection: 111 ; 
values calculated without  polarization correction for sec- 
ondary reflecting planes diffracting in a direction forming an 
angle p with the normal  to the plate. [] Values for the same 
secondary reflecting planes taking polarization into account.  
A Primary reflection: 222. Each point  was obtained from a 
pair of planes diffracting in directions which form the same 
angle with the normal .  The bars across the experimental  
points indicate the uncertainty arising from the estimated 
error in the measured value of R. 

77 (DEGREES) 

0.08 

0.06 

o. t . . . . .  t 

BRAGG 
REGION REGION 

q I I I I I 
- 0 .4788  -0 .2660  - 0 . 0 5 3 2  0.0532 0.2660 COS/3 

Fig. 5. Silicon plate. Some results f rom preliminary measure- 
ments made with Mo K0c. Primary reflection: 111. The 
branch of  the curve in the Bragg region has the wrong 
slope; this is probably due to experimental  error. 

Experimental 

Preliminary experiments were performed on Ge and 
Si single-crystal plates; these crystals were saw cut and 
accordingly had considerable surface damage. The 
intensity diffracted by the planes (111), (222) and (333) 
was then recorded as a function of the angle of rota- 
tion around the diffraction vector. Experimental values 
for the ratio R were then obtained from the graphs for 
several pairs of double reflections. Each of such pairs 
when treated by the method explained above yielded a 
value for the mosaic spread r/. In our case the primary 
diffracted beams were actually reflected (Bragg case) 
and the average path-lengths were determined by 
absorption (Appendix 2). For a crystal whose surface 
is considerably damaged one would expect to find im- 
portant variations in the value obtained for I/as one 
considers, for a given primary diffracted beam, sec- 
ondary beams which bear a different inclination with 
respect to the normal to the crystal surface. For 
example, in a limiting case, if a secondary diffracted 
beam makes an angle of 90 ° to the normal it will give 
information regarding mostly the superficial layers; a 
beam more inclined with respect to the normal will go 
deeper into the crystal and should provide some infor- 
mation about deeper layers. One would expect then to 
obtain a maximum for I/at  90 ° and then increasingly 
lower values as the angle between the secondary dif- 
fracted beam and the normal to the plate increases 
over 90 ° (Laue case) or as it decreases from 90 ° (Bragg 
case), but the curve is not expected to be symmetric 
about 90 °. Also, for a given inclination of the secondary 
beam one should expect increasingly lower values of r/ 
as the primary beam departs more from the surface 
of the crystal, i.e. ~ for the primary reflection 333 
should be smaller than for the 111 when secondary 
reflections with the same inclination are considered. 
These predictions are indeed confirmed by the ex- 
periment as shown in Figs. 4 and 5, where the results of 
the analysis have been plotted. For these preliminary 
measurements the second approximation was used in 
the calculations except in the case of the primary re- 



672 S I M U L T A N E O U S  R E F L E C T I O N S  AND THE M O S A I C  S P R E A D  

flection 222 (Fig.4) where the third approximation 
was used. 

Since the depth to which a given beam penetrates 
below the surface is given by x = l .  cos/3, where 1 is 
the average path-length and ,8 is the angle with the 
normal, we have plotted r/ against cos/3 for a given 
primary reflection. The bars across tbe experimental 
points indicate the uncertainty arising from the esti- 
mated error in the measured value of R. This error was 
in general of the order of 1%. It is clear then that in order 
to obtain accurate values for r/it  is necessary to meas- 
ure R to a few tenths of one per cent. 

The value of r /plotted should not be attributed to 
the layer located at the depth x below the surface, it 
is rather some average over the volume of the crystal 
between the surface and x. Different points on the 
same abscissae correspond to independent secondary 
planes having the same inclination to the normal; they 
agree well within the limits of the experimental error. 

The fact that refections bearing the same inclination 
to the normal, but actually going in different directions, 
may yield different values for r/, could eventually be 
used to test the anisotropy of the mosaic spread of the 
sample. However, more accurate data are needed to 
perform such an analysis. 

APPENDIX 1 
Polarization correction for double reflection preceded 

by a crystal monochromator 

In the experiments performed, a plane monochromator 
of silicon was used. Consequently, polarization correc- 
tions were needed for double reflections in the crystal 
preceded by reflection of the primary beam in the 
monochromator.  

Azaroff (1955) has worked out the polarization 
correction for a single reflection in the crystal preceded 
by a reflection monochromator.  Also, polarization 
corrections for double reflections when the incident 
beam is not polarized have been calculated by Zacba- 
riasen (1965). Neither of them applied to our case. 

The polarization factors were calculated following a 
procedure similar to the one used by Azaroff (see Fig. 
4). The electric field in the double diffracted beam, i.e. 
after three reflections, one in the monoehromator (with 
Bragg angle ct) and then in planes i and j (Bragg angles 
0~ and 0j respectively~ is found to be given by: 

E,,,2 1 2 2 2 - 2  2 = 2k k skj Eo[(COS 205. cos 2 ~ + sin 2 gt)cos 2 20~ 

x (cos 2 2~ cos 2 ~0 + sin 2 ~0) 

+ (cos 2 205 sin 2 ~t + cos 2 ~ )  

X (COS22~ s in  2 ~0 + c o s  2 ~0)], (1" 1) 

where £o refers to the electric field in the primary non- 
polarized beam and the k's include the reflectivities 
and other factors which are irrelevant here; the angles 
~0 and g/are defined in Fig.4, ~0 coincides with Azaroff's 
angle Q and depends on the experimental setup, gt can 

be calculated for each pair of planes i and j using a 
relation given by Zachariasen (1965): 

cos 20~-  cos 20~. cos 205 (1.2) 
cos~v= - s i n  20i--sin2-0j " ' 

where 20k is the angle between the beam reaching the 
crystal and the doubly diffracted beam. Substituting 
for gt in equation (1.1) the following expression is 
found for the polarization factor: 

(cos 20 -cos 20,. cos ] 
-s in  2 20~- " _l I . I .  

x cos z 20~(1 - sin 2 20c. cos 2 ~0) 

(cos 20~-cos  201 cos 205) 2 
+ sin / 20~ . . . . . . .  

20 ]. (sin  cos   +cos  (1.3) + 

In our case, ~0 = n/2 and then 

(cos 2 0 k -  cos 201 cos 205) 2 
ij(k) ½ P I sin 2 20t 

(cos z 2c~-- cos 2 200 + cos z 2~ cos z 205 + cos z 20~} (1.4) X 

It is readily seen that equation (1.3) contains as 
particular cases both Zachariasen's and Azaroff's 
formulae. In fact, when there is no monochromator,  
setting ~ = 0  one reobtains Zachariasen's result [his 
equation (6)]. 

When there is just a single refection, preceded by 
the monochromator,  we set: 05=0, Ok=Oi thus ob- 
taining • 

po~ =½(sin 2 20~. sin z 2~. cos z ~0 +cos  2 20~ +cos  z 2~] 

In our case ~0 = re/2 and 

po~ =½[cos 2 2~ + cos z 20~]. 

In the common case where ~0 = 0, one finds the familiar 
result: 

po~ =½[1 + cos 2 2~. cos 2 20d.  

It is to be noted that in our notation Azaroff's ex- 

pression (14) is given by po~ , since it is referred to the 
po 

intensity of the beam after refection on the mono- 
chromator. 

APPENDIX 2 

Path-lengths 

The path-lengths of the different diffracted beams will 
now be obtained. It is easy to show that for a plane 
parallel plate of thickness T, the transmission factor 
for a reflected beam is 

[1-exp (- 
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where 
1 1 1 

}, }'0 },~ 

For a diffracted beam originated at depth x below 
the crystal surface, the total path-length, including the 
distance travelled by the incident beam, is given by 
x/},. The average value of x/}, is given by 

(7_): A 
d .  

where A* = 1/A. 

It can be readily shown that in this case 

({) 1 exp( 
= ~- -- 7 " i - -exp ( - , T / r ) "  

Moreover, 

<x>+,o 

where ( x )  =lo and (x)  = h .  
7o 7i 

For a highly absorbing crystal (as for instance ger- 
manium with Mo K~, . = 3 5 0  cm -1) we have practi- 
cally: 

1 

Then, 
<x-A = 1 .  
}'0 " 7o 

and 

},~ , }'~ 

When the primary reflection is symmetric: },o=71, 
}'/70 = },/},, =-~ and lo = ll = 1/2,. 

Then 

h= (x )  lo -  1 1 _ 1 
}, . 2.  2. 

for all secondary reflections. 
When the secondary beam is transmitted rather than 

reflected and the crystal is highly absorbing the same 
reasoning can be followed and one find the same 
effective path-lengths 1/2. for all beams. 

It is a pleasure to acknowledge a grant from the 
Fulbright Commision which enabled me to start the 
present paper at the Physics Department of the Poly- 
technic Institute of Brooklyn where the experimental 
work and part of the theory were done. 

It is also a pleasure to thank both Professor B. Post 
and Professor R. A. Young for the facilities they put at 
my disposal and to acknowledge helpful discussions 
with Professor B.Post and with Professor A.J .C.  
Wilson. 

References 

Az~oFF, L. V. (1955). Acta Cryst. 8, 701. 
MOON, R. M. & SHULL, C. G. (1964). Acta Cryst. 17, 805. 
R~NNINGER, M. (1937). Z. Phys. 106, 141. 
ZACHaRtASEN, W. H. (1945). Theory of X-ray Diffraction in 

Crystals. New York: John Wiley. 
ZACHaaUASEN, W. H. (1965). Acta Cryst. 18, 705. 

Acta Cryst. (1969). A25, 673 

Quelques Propri6t6s des Faeteurs de Structure 
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The structure factor is shown to be a basis for a one-dimensional representation of the point group, 
and the following property of non-primitive translations of most of the space groups is derived: the sum 
of non-primitive translations is a primitive one. 

Representation engendr~e par le facteur de structure 

Rappelons qu'un facteur de structure trigonom~trique 
~(K) = 27 exp [ -  2zci(K. ~r + %)] se transforme dans 

une op6ration (c~lz,) d'un groupe d'espace Ge suivant 
la loi (Bertaut, 1955): 

~(K~)= exp ( -2zUK. z~)~(K). (1) 

~(K) est donc fonction de base d'une repr6sentation 
FK du groupe ponctuel G d'ordre g: 

FK(~) = exp (--2~ziK. z~). (2) 

Deux 616ments (elze) et (fllrp) de Ge se multiplient 
suivant la relation (3), off T,p est une translation r6ti- 
culaire et e l'identit6" 


